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Abstract. A new problem in scientific computing is the merging of existing sim-
ulation models to create new, higher fidelity combined models. This has beena
driving force in climate modeling for nearly a decade now, and fusion energy,
space weather modeling are starting to integrate different sub-physics into a sin-
gle model. Through component-based software engineering, an interface support-
ing this coupling process provides a way to invoke the sub-model throughthe
common interface which the top model uses, then a coupled model turns into a
higher level model. In addition to allowing applications to switch among linear
solvers, a linear solver interface is also needed for the model coupling.A linear
solver interface helps in creating solvers for the integrated multi-physics simula-
tion that combines separate codes, and can use each code’s native and specialized
solver for the sub-problem corresponding to each physics sub-model. This pa-
per presents a new approach on coupling multi-physics codes in terms ofcoupled
solver, and shows the successful proof for coupled simulation through the implicit
solve.

Key words: Parallel model coupling; Component architecture and interface; Sparse
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1 Introduction

Modeling physical phenomena with scientific computing is aninterdisciplinary effort.
Many problems in science and engineering are best simulatedas a set of mutually inter-
acting models; practical physical systems are often mathematically modeled by compli-
cated Partial Differential Equations (PDEs). Many real-world systems involve a com-
plex of multiple physical components. Scientists in many fields are becoming increas-
ingly interested in coupling models together in order to advance their understanding. For
example, the Sun-Earth system [29] presents a complex natural system of many differ-
ent interconnecting elements: the solar wind transfers significant mass, momentum and
energy to the magnetosphere, ionosphere, and upper atmosphere, and dramatically af-
fects the physical processes in each of these physical domains. The Community Climate
System Model (CCSM) [7] for global climate models comprisesinterdependent models
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that simulate the Earth’s atmosphere, ocean, cryosphere, and biosphere. These systems
interact by exchanging energy, momentum, moisture, chemical fluxes, etc. For exam-
ple, atmosphere provides to the Earth’s surface downward radiative fluxes, momentum
fluxes in the form of wind stress, and fresh water flux in the form of precipitation.
Fusion energy simulation is now integrating codes that model different physics of a fu-
sion reactor [11, 20]. Most recently the Center for Simulation of RF Wave Interactions
with Magnetohydrodynamics (CSWIM) [6] works on coupling existing codes to model
the interaction between high power radio frequency (RF) electromagnetic waves, and
magnetohydrodynamics (MHD) aspects of the burning plasma.

In various scientific simulation domains, a stand-alone model can run with simpli-
fied assumptions on the interaction of the particular domainwith the rest of the system.
Merging the existing simulation models to create a new higher fidelity combined model
is a newly emerging theme in the scientific computing community. Data exchange based
model coupling such as Model Coupling Toolkit (MCT) [22] andEarth System Mod-
eling Framework (ESMF) [31] proves that models can be coupled through exchanging
the boundary or initial condition between models. Models are generally mesh-based,
time-stepping models and may be based upon highly complex ornonlinear algorithms
and numerical schemes. The process of model coupling can occur on three different
time scales: tightly coupled models operate at the fastest time scale where data are ex-
changed every time step; for slowly varying physics, the coupling needs only be done
every few time steps; the slowest coupling operates once persimulation. In this paper,
we won’t get into the details of the above complexities, and mainly focus on the frame-
work support in which models are to be embedded in order to form part of a coupled
application.

Software component model for scientific computing may help in coupling the mul-
tiple physics codes, such that each code presents the clear interface for the center con-
troller - Coupler. Our previous research work [23, 24, 27] designed a common inter-
face LInear Solver Interface (LISI) which spans multiple high-performance computing
(HPC) solver packages. Within Common Component Architecture (CCA) framework
CCAFFEINE [8], each package can be encapsulated into a component providing stan-
dard interface so that easy switching of solver packages is achieved. In this paper, each
sub-physics maps into an individual solver, a coupled physics becomes a coupled solver.
It demonstrates the idea for coupling multi-physics codes through LISI interface by us-
ing implicit solve method. We first investigate some effortson model coupling; then
present the requirements for solver coupling; after analyzing the design in details, we
provides a CCA coupling approach; finally we give a test case to validate the solver
coupling idea.

2 Related Work

Some of coupling efforts have been done in the scientific computing community over
the past 10 years. They have been deployed within their science domain [22, 17, 31, 29,
26, 19]. None of them supports the wide variety of discretization schemes and numeri-
cal techniques of existing discretization schemes, and combining codes from different
frameworks is still hard.
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Tools such as MCT [22] that tries to provide a common utility to couple the cli-
mate models are mainly focusing on the data exchange betweenthe models. The ESMF
[31] defines an architecture for composing complex, coupledmodeling systems. The
complicated applications are broken up into smaller pieces(components). Components
are assembled together to create an application and the different implementations of
component can be used in a plug-N-play (plug-N-play) fashion. The Space Weather
Modeling Framework (SWMF) [29] aims at providing a flexible and extensible soft-
ware architecture for multi-component physics-based space weather simulations. The
SWMF uses layer architecture which is similar to the ESMF. A solid rocket motor
simulation [19] requires consideration of multiple physical components, such as fluid
dynamics, solid mechanics and combustion. Roccom providesan object-oriented soft-
ware integration framework for inter-module data exchangeand function invocation in
parallel multi-physics simulations. The undergoing CSWIM [6] project is focusing on
the interaction between high power radio frequency (RF) electromagnetic waves, and
magnetohydrodynamics (MHD) aspects of burning plasma. It uses the batch manage-
ment system and even system to couple the codes.

The above work demonstrates the successful usage in their perspective domains, but
none of these frameworks has attracted a large user base or been widely adopted outside
their field of application due to its lack of generality. CCA [14] has been started to
address this problem, applying component principles at thelevel of whole applications,
so that parallel applications can run both stand-alone and with other applications within
the framework.

3 Solver Coupling Requirements

Coupled modeling is increasingly necessary to make progress in understanding the sci-
ence of complex physical phenomena. The interaction in a combined simulation needs
to be addressed by mathematical and physical aspects of simulation. Combined prob-
lem can be solved by forcing consistent solutions on the interfaces. The combination is
not trivial because the constituent applications come withtheir own meshes, discretiza-
tions and internal data structures, especially in HPC, the data decomposition may be
different.

Component models have been introduced to the module-coupling community re-
cently, and already found themselves well suited for the requirements. The most promis-
ing approach is to define a standard set of interface functions that every physics com-
ponent must provide. The interface describes the list of inputs and outputs, and exists
independent of the implementation. Such common interfacesare present in some of the
frameworks mentioned in section 2. Each sub-model needs to provide standard inter-
face to the framework while the framework provides the data exchange interface for
each sub-model to use.

In this section we analyze some of the challenges pertinent to the treatment of com-
bined physics models as a coupled solver in a multi-physics simulation. The invocation
of sub-model is through CCA LISI interface [23]. The target models include those that
have
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– an extensive software base of existing codes which were not designed to interoper-
ate with other codes.

– an investment in the sub-model software which is too expensive to duplicate be-
cause of various reasons such as continuing active use, development, and evolution.
In other words, it is not sufficient to use an earlier release or frozen version.

– an “awareness” of the other sub-physics, typically by a greatly simplified treatment
of their contributions. For example, they assume that a boundary condition is not
time-variant, or that some averaging is sufficient to reflectcontributions from other
sources, or that the constituent physics are not coupled.

– a vital need for inter-model interfaces, which requires active collaboration between
application and computer scientists. The definition of those interfaces is ideally a
community effort with broad intellectual support.

– parallelism requirement in the computations.

Through the participated models’ feature, we may abstract the major requirements
for the solver coupling:

– supporting multi-language legacy codes,
– providing data exchange sub-model running on the differentsize of processes (called

MxN problem),
– requiring minimal changes for each physic model,
– allowing individual code evolvement,
– use of model’s native and possibly highly specialized solvers.

In the following subsections, we will give detailed explanations on above requirements.

3.1 Multi-language support

The large scale simulation codes always involve the modulesdeveloped by the different
teams from different institutes. The code may be in different program languages, par-
allelism paradigms or platform dependability. The CCA [14]provides HPC language
support, in particular, support for FORTRAN77, FORTRAN90,C, C++, Java, etc. This
is achieved through Babel [16], a tool relying on the Scientific Interface Definition
Language (SIDL) [21] to express software interfaces in a language neutral way. Babel
compiler can generate the appropriate glue code stubs and skeletons based on SIDL to
facilitate language interoperability. In turn, CCA supports the application to run with
components of different languages.

3.2 Data exchange

In a coupled model, the data exchanged by two componentsAi andAj reside on their
overlap domainΩij , and in principle each component will have its own discretization of
Ωij . And two components may run on different numbers of processors, so that the data
partitioning on the overlap domain may be different. This isso called M-by-N problem
in the scientific coupling [12] community. In our design, we treat sub-models as in an
algebraic way, such that we assume that some other components already did the data
interpolation and M-by-N data exchange before the couplinginterface is called. In our
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current research, we only target on the case when the coupledmodels run on the same
number of processors, but in the future, when considering the other cases, we will take
a look at how to integrate the M-by-N component with our coupling framework.

3.3 Minimal code changes

Existing software integration frameworks typically require large manual rewrites of
existing codes, or specific tailoring of codes written to be used in the framework. The
resulting special purpose code is not usable outside of the framework. The easy reuse
of legacy software is one of effort of CCA [14], it minimizes the effort required to
incorporate existing software into CCA environment. A thinlayer of the component
wrapper is added to the legency code, with well defined interface the legency code
becomes a ready to use component. Since the target models aretoo expensive to rewrite,
the above solution makes the minimal code change possible.

3.4 Individual code evolvement

The coupled model should allow each sub-model keep growing as long as the interface
it provides is unchanged. In a coupled solver, each sub-model provides a LISI interface,
only the adapter needs to be updated once the sub-model grows. The Component Based
Software Engineering (CBSE) allows individual sub-model evolving without disturbing
other participating sub-models.

3.5 Use of the native solvers

In a PDEs simulation, sometimes the general solver cannot fully solve the discretized
problem due to complex geometry, and mesh shape, and discretized form of PDEs.
The resulting linear system may have a very irregular sparsity pattern, large condition
number, etc., which makes iterative method such asGMRES, BICGSTAB impossible to
solve it. In this situation, it is hard to use the available solver packages. These simu-
lations usually write their own solvers, in some way the solver is embodied with the
simulation code. If this model is coupled with other models,the exposed LISI interface
can make the model a special solver component.

While using CCA and LISI to define the coupled solver, the aboverequirements can
be satisfied. And when each sub-physics is treated as a solver, the coupled solver idea
can be used in multi-physics coupling.

4 Design of Coupled Solver

In order to analyze the coupled solver, some mathematics background needs to be
demonstrated first. Domain decomposition method received astrong revival of inter-
est in the end of 80s and early 90s due to its potential in parallel computing [15]. It is a
class of techniques for the solution of PDEs on a domain by solving smaller problems
on subdomains. They are particularly useful for solving problems on irregular domains
and on parallel computers. The key ingredient is the system of equations governing the
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variables on the interface between the subdomains. The domain decomposition method
idea can be traced back to Schwarz’s alternating procedure,in which existence of so-
lutions to boundary value problems are proved by an iteration involving solutions on
overlapping subdomains. This idea is also widely used in many fields of scientific com-
puting. Figure 1 shows these two ideas, and our current research borrows the domain
decomposition idea in a reverse manner.

Fig. 1. (A) Domain decomposition used in parallel computing about 20 years ago; (B) Emerging
modeling coupling from individual sub-model

4.1 Model Description

To simplify the illustration, we consider two-domain problem in Figure 2. There are
two overlapping subdomainsΩ1 andΩ2, the interface between two domains is named
Γ .
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Ω1

Ω2

Γ

Fig. 2. Coupled domain

When the domain decomposition method idea is applied to multi-physics coupling,
the domainΩ1andΩ2 can be treated as the different physics simulations, which solve
the different PDEs, for example. There are two cases for the problem to be solved

1. when there is no interaction between physics, the discretized system is solved as:
[

A11 0
0 A22

]

∗

[

x1

x2

]

=

[

b1

b2

]

(1)
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HereA11 andA22 are discretized form of each physics on its own domain,x1 and
x2 are solution vectors for each physics,b1 andb2 are the right hand side vectors
for each physics simulation.

2. When thinking about coupling two physics codes, a combinedlinear system is cre-
ated in Figure 3. BesidesA11 andA22 for each physics, a few new matrices are

Fig. 3.Multi-Physics Coupling Diagram

introduced through the interaction between two physics:
– A33 represents the linear system for interface nodes, it is based on governing

PDEs used on the interface nodes, it may have its own discretization scheme
used or use one of two coupled physics discretization scheme, which is the de-
cision made by two physics simulation codes. Some data mapping needs to be
done on these interface nodes. For example, the grid points of one simulation
may correspond to the mesh of the coupled simulation. Usually data interpola-
tion and MxN component need to solve this problem as we discuss in section
3.

– A13 andAT
13

are the coupling matrices between physics onΩ1 and interface
nodes, generally the interactions between them are symmetric from each side
of point of view, so that the transpose ofA13 represents the coupling from
interface nodes to the nodes on the physics domainΩ1.

– A23 andAT
23

are the coupling matrices between physicsΩ2 and interface nodes.
– x3 andb3 are the solution vector and right hand side vector for the interface

nodes.




A11 0 A13

0 A22 A23

AT
13

AT
23

A33



 ∗





x1

x2

x3



 =





b1

b2

b3



 (2)

Through comparing non-coupling Equation 1 and coupling Equation 2, the system of
linear equations becomes more complex to solve, especiallywhen each sub-physics
simulation runs in parallel.
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4.2 Solver Methods

In this section, we are investigating two solver methods on solving Equation 2. Al-
though both methods can be used, one is chosen over the other due to its guaranty on
solver’s convergence.

One of the most popular method on solving Equation 2 is the alternating Schwarz
method [25]. The original alternating procedure describedby Schwarz in 1870 consisted
of three parts:

1. Alternating between two overlapping domains,
2. Solving the Dirichlet problem on one domain at each iteration,
3. Taking boundary conditions based on the most recent solution obtained from the

other domain.

This procedure is called the Multiplicative Schwarz procedure [13, 18]. This algorithm
is therefore quite sequential, since each sub-domain updates its unknowns based on
the other domain’s previous step solution. It may not be the best candidate for parallel
model coupling. The additive variant of the Schwarz procedure is more suitable for
parallel processing, because the subdomains are not updated until a whole cycle of
updates through all domains are completed [25], and the subdomains can be solved
separately and at the same time.

When thinking coupled physics problem in terms of coupled solver, alternating
Schwarz method is one of the options. But this method is slow and sometimes not
convergent. There are two key assumptions associated with classical Schwarz method,
and these assumptions are not verifiable from linear algebraarguments alone, see [25]
(chapter 13.3). Given a linear system, it is unlikely that one can analytically establish
that these assumptions are satisfied.

Another way to solve this problem is the Schur complement method [30]. The Schur
complement arises naturally in solving (2) by using Block-Gaussian Elimination:

G = A33 − AT
13

∗ A−1

11
∗ A13 − AT

23
∗ A−1

22
∗ A23,

whereG is the Schur complement system for solving the interface nodes, andG is much
smaller thanA22 andA33. The solution of interface nodes then can be used to compute
the solution for each physics subdomain. As we mentioned in section 1, we introduce
the concept ofCoupler to capture the interaction between two coupled physics codes.
Assume that physics codes know nothing about the coupling matrix A13 andA23 which
are only known to the coupler.Coulpler is an additional program doing extra work
alongside two stand-alone physics simulations.

4.3 Coupled Solver Algorithm

In our approach, we chose the Schur complement method for ourcoupled solver, the
reasons are at two folds: (1) Alternating Schwartz method isslow and sometimes not
convergent. It can only couple the systems via their boundary conditions; (2) Schur
complement method converges in fewer iterations for any coupled system and explicitly
account for complex coupling interactions.
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These solution processes can be done with Krylov subspace methods such as GM-
RES and BICGSTAB [10], which requires repeated matrix-vector multiplications. The
algorithm 1 details the solution process.

Algorithm 1 Coupling Algorithm through Schur-complement Method
Initialize:

– subdomainΩ1 computesb1 andω1 = A
−1

11 ∗ b1, returnω1 to coupler;
– subdomainΩ2 computesb2 andω2 = A

−1

22 ∗ b2, returnω2 to coupler;
– coupler computesb3 = b3 − A

T
13 ∗ A

−1

11 ∗ b1 − A
T
23 ∗ A

−1

22 ∗ b2

Step 1: SolveG ∗ x3 = b3: During each iteration, a matrix-vector product is conducted, (x3p

represents the solution vector ofx3 from the previous iteration), and steps include:

1. coupler computesx3 = A33 ∗ x3p

2. coupler computesd1 = A13 ∗ x3p

3. subdomainΩ1 computesω1 = A
−1

11 ∗ d1

4. coupler computesx3 = x3 − A
T
13 ∗ ω1

5. coupler computesd2 = A23 ∗ x3p

6. subdomainΩ2 computesω2 = A
−1

22 ∗ d2

7. coupler computesx3 = x3 − A
T
23 ∗ ω2

Step 2: Compute

– x1 = ω1 − A
−1

11 ∗ A13 ∗ x3

– x2 = ω2 − A
−1

22 ∗ A23 ∗ x3

Note that during each iteration, when Schur complement matrix is used, five matrix-
vector products are called, and two linear solvers are deployed. The algorithm only
requires the solution of problems withA11 andA22, which corresponds to solving in-
dependent problems on the subdomains. This means that coupled solver can leave the
subdomain solve unchanged while adding new functionality only in the coupler.

5 CCA Coupling Approach

Component-based software design combines object-oriented design with the power-
ful features of well-defined interfaces, programming language interoperability and dy-
namic composability [28]. While component-based design wasinitially motivated by
the needs of business application developers, it also offers enormous potential bene-
fits to the computational science community. The CCA [14] is asoftware component
model that specially addresses HPC applications. In CCA, the software unit is treated
as a component, each component connects to another component through a collection
of public interface, or ports [1]. CCA employs a provides/uses paradigm in which a
component provides a set of interfaces that other components can use.

In our previous research work, LISI [23, 24, 27] is an effort within CCA Forum to
identify the common requirements among widely available HPC sparse linear solver
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packages, and abstract a common Application Programming Interface (API) that spans
them. LISI is designed to facilitate the run time plug-N-play from multiple HPC solver
packages. The generic solver interfacelisi.SparseSolver is deployed as a CCA port
which can be implemented by a solver component and used by another component. The
auxiliary interface when a matrix free solver is used is alsopresented aslisi.MatrixFree
interface. The component providing this interface will provide a matrix vector prod-
uct functionality, and the component using this interface will be a solver component of
solving a linear system in a matrix free manner. In order to support constructing a cou-
pled solver for the multi-physics coupling simulation, thelisi.BaseSolver is abstracted
from lisi.SparseSolver to support the matrix free solver. This interface only requires
uses port to provide right hand side vector and get the solution back, and the block row
partitioning is assumed in this interface.

LISI BaseSolver Interface

package lisi version 0.2

{

interface BaseSolver extends gov.cca.Port

{

int initialize(in long comm);

int setStartRow(in int startrow);

int getStartRow();

int setLocalRows(in int rows);

int getLocalRows();

int setupRHS(

in rarray<double,1> RightHandSide(NumLocalRow),

in int NumLocalRow);

int solve(

inout rarray<double,1> Solution(NumLocalRow),

inout rarray<double,1> Status(StatusLength),

in int NumLocalRow,

in int StatusLength);

}

}

5.1 Design Architecture

In section 4, we have analyzed the coupled solver in details from its mathematics as-
pect. From the algorithm we present in previous section, there must be at least three
components for our CCA design, one for each subdomain physics simulation and one
for the coupler. Since the coupler is also going to solve the Schur complement system
for x3, we introduce another solver component to solve the Schur complement sys-
tem in a matrix free manner so that the Schur complement system does not have to be
formed explicitly.

Next question we need to answer is what information each component should hold
to best simulate the real world coupling situation? In our design we treat the coupled
physics simulation as a coupled solver, for two physics subdomains, they should hold
their own linear systemsA11 andA22, and right hand side vectorsb1 and b2. Since
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physics simulation maintains its own application data, it runs as a stand alone appli-
cation but now provideslisi.BaseSolver port. All the coupling information should re-
tain within Coupler component, the information includes the coupling matrix between
physics subdomain 1 with the interface nodes -A13, and the coupling matrix between
physics subdomain 2 with the interface nodes -A23, and the discretization on the inter-
face nodes with its own governing function -A33. In the real world coupling simulation,
these three matrices must be designed by application domainexpert in order to construct
a meaningful combined simulation.

Fig. 4.Coupling With CCA Components

Figure 4 shows the design architecture for the coupled physics simulation, the com-
ponent diagram follows the CCA uses-provides design pattern, the arrow means the
calling direction.

– Coupler component has two provides ports: one islisi.BaseSolver to provide the
functionality to the outside application who may treat the coupled simulation as a
solver; one isMatvec port which provides the matrix vector product for the Schur
complement system when solvingx3. This component also has three uses ports,
and all of them arelisi.BaseSolver ports. These ports are used to get the solution
back from two physics simulation components and one solver component forx3.

– Physicscomponents on subdomain 1 and subdomain 2, they are basically con-
verted from real world simulation codes to components through a provides port
lisi.BaseSolver. Usually a thin layer is implemented on top of the legency codes.
These two components are called once during each iteration in the coupling algo-
rithm as descripted in Section 4.

– Solvercomponent forx3. It represents Step 1 in algorithm from Section 4. Since
this component has to solve a Schur complement system in a matrix free fashion, it
has a uses port ofMatVec along with its provides portlisi.BaseSolver.
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5.2 Implementation

This design makesCoupler as a central hub for the coupling, andPhysicscompo-
nents andx3 Solver component should run simultaneously to exploit concurrence to
the most in the simulation overall. CCA is communication transparent specification,
which makes it lightweight and simple to use [9]. In our design, we choose in the most
intuitive way among several MPI constructions already known by application devel-
opers, such as MPI communicator groups. Components in the CCA coupling run in a
single MPI instance (started by a singlempirun command). The MPI communicator
world needs to be divided into several subgroups as follows:

– a1 group and a2group are MPI communicator groups for Physics component on
subdomain 1 and subdomain 2, respectively. Depending on howlarge each simu-
lation is, these two groups differ in size. And they shouldn’t overlap to each other,
since two simulations need to run simultaneously.

– a3 group is for both Coupler component andx3 Solver component. Since every
time Coupler requires fromx3 Solver, it has to wait for the solution return in a
blocking call manner. It is not crutial to have concurrency between these two com-
ponents. Since theA33 is much smaller compared toA11 andA22, the processes
assigned to Coupler andx3 Solver might have number fewer than the Physics com-
ponent. And a3group shouldn’t share processes with either a1group or a2group.

– a13group is the augmented MPI communicator group for both a1group and a3group,
and a23group is the augmented MPI communicator group for both a2group and
a3 group. These communicator groups are used for data passing between Coupler
component and Physics components.

During initialization phase, twoPhysicscomponents load their linear systemA11

andA22, and the right hand side vectorsb1 andb2, act as a real application.Coupler
component loads the coupling informationA13, A23, A33 andb3. Since all the compo-
nents may run on different number of processors, data is partitioned into the different
number of chunks. In our design, we tried to avoidMxN problem [12], so we make
the physics components running on the same number of processors, and the coupler
running on a single processor. But in the real coupling problem, when adding theMxN
component, both coupler and physics components can run on any number of processors.
In order to get the solution from subdomain 1 back to the coupler, solution is produced
within MPI communicator group a1group, but collected to coupler’s processor through
communicator group a13group. The similar is true for the solution on subdomain 2.

During the solve phase,Solver component calls back throughMatVec port during
each of its iteration for solution ofx3. During each iteration step, solutions ofA11

andA22 are needed from physics subdomain 1 or subdomain 2. The similar steps are
applied as in initialization phase. One different thing is that now the right hand side
vector needs to be sent from the coupler to each physics component, MPI scatter call is
used within each augmented communicator groups. Also some synchronization should
be done for signaling these solving processes such as a Boolean variable indicating
the process starts. Basically physics components are waiting for the signal ofMatVec
from Coupler. Only if the signal is received, they participate the collective calls on
MPI Scatterv andMPI Gatherv.
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During the final computing phase, the newly computed solution from Schur comple-
ment system onx3 is used to compute the solution vector for each physics subdomain
as indicated in section 4.3. Now the coupling cycle is done, two physics problems are
solved under the condition that they interact each other on the overlapped domain.

5.3 Combining Multiple Packages

In our implementation, we also want to demonstrate that multiple solver packages can
be linked together to compose into a new higher fidelity solver. Since in our previ-
ous research [23], we have converted Trilinos AZTECOO [5], PETSc [3] and SuperLU
[4] into CCA components, they have providedlisi.SparseSolver port to other compo-
nents to use. Now we need to reimplement those components with lisi.BaseSolver inter-
face, and another new package is added - High Performance Preconditioners (HYPRE)
[2]. HYPRE is a multigrid solver, and Hypre’s BOOMERAMG is a algebraic multigrid
solver. Our goal is to demonstrate the interface usage on coupling code, which allows
each code to use its native (specialized) solver. We choose the AZTECOO solver for
our physics simulation on subdomain 1, used the BOOMERAMG solver for our physics
simulation on subdomain 2, and the PETSC solver as Schur complement solver forx3.
In this way, three widely used solver packages are deployed together in one application
within a component based multi-physics simulation. Not only the idea of combining the
multiple solver packages is validated, but also multi-physics coupling can be resolved.

6 A Test Case

In order to demonstrate the multi-physics coupling throughthe LISI interface, we build
a prototype test problem which may arise in a typical real-world application scenarios.
There are two domains both model the following 2-dimensional PDEs,

∂2u

∂x2
+

∂2u

∂y2
= f (3)

with Dirichlet boundary conditions, discretized with five-point centered finite-difference
scheme onnx ×ny grid. Wheref = (2.0−6.0∗x−x2)∗ sin(y) and boundary condi-
tion b = x ∗ x ∗ sin(y). Figure 5 shows our test problem, domain 1 sits on the left side
with domain boundary[0, 1]× [0, 1], domain 2 sits on the right side with[1, 2]× [0, 1].
The interface nodes align vertically atx = 1 between two domains. And the interface
domain is discretized with one dimensional PDEs. 400 discretized nodes are used along
x- andy- direction, so the linear system order is about 160000. The same discretization
is used for both domains. The test runs on the Linux clusterOdin in the Computer Sci-
ence Department at Indiana University.Odin has 128 nodes, each with two dual core
AMD Opteron 2.0 Ghz processor and 4GB RAM on each computing node.

Physics subdomain 1 runs Trilinos AZTECOO solver with maximum iteration num-
ber 500 and tolerance of1.0e−6, the solver method BICGSTAB and preconditioner
method Jacobi are used. Physics subdomain 2 runs HYPRE’s BOOMERAMG solver
with maximum iteration number 30, and tolerance of1.0e−6, all other parameters are
set to default. Schur complement system solver forx3 runs Portable, Extensible Toolkit
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Fig. 5.Test problem setup

for Scientific Computation (PETSc)’s BICGSTAB method with maximum iteration
number 500 and tolerance of1.0e−6, since it uses PETSc matrix-free method, there
is no preconditioner chosen. The test runs on 9 processes total, components for physics
1 and 2 each run on 4 processes, and coupler runs on 1 process. The test repeats for 10
times, and result is average of the runs. Figure 6 shows the history of residual from solv-
ing the Schur complement system onx3, the residual decreases as the iteration number
increases, and it converges at the iteration number 415. This result demonstrates that
coupled system is successfully solved. Sub-physics on domain 1 solves in 286 itera-
tions with Trilinos solver while sub-physics on domain 2 solves in 5 iterations with
HYPRE solver.
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Fig. 6.Test result
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7 Conclusion

In this paper, we demonstrate a new way of coupling multi-physics codes through CCA-
LISI. This is the first model coupling approach within CCA, wegeneralize the model
coupling idea through CBSE and treat coupling models as an abstracted solver. We out-
line a flexible approach to creating coupled model by introducing a new concept - cou-
pled solver. When each sub-physics is treated as a sub-solve from the coupled physics,
an implicit solve between multiple sub-physics can become acoupled solver. With CCA
[14] technology, each sub-physics is encapsulated as a component with standard inter-
face exposed to other components. It makes coupling easier through introducing ex-
tra component -Coupler. While each sub-physics model still runs separately, they all
talk to Coupler to exchange the coupling information. The paper analyzes the require-
ments for a coupled solver, suggests two coupling algorithmand compares them. It also
presents a coupling algorithm design along with its detailed implementation through
CCA component framework; Although the tests were conductedwith rather simple
physics models, they nevertheless clearly show the coupledsolver in action, and thus
validate the proposed coupling of physics models under certain assumptions of data
representation in algebraic form. As a future work, a generic way to represent the cou-
pling information will need to be considered. For example, data interpolation needs to
be done by other components when sub-models run on differentnumbers of processes.
Being sufficiently general, the LISI interface, successfully used in this work, may be
extended to incorporate new representations of the coupling information.
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